Thermoelectric efficiency at maximum power in low-dimensional systems
نویسندگان
چکیده
منابع مشابه
Thermoelectric efficiency at maximum power in a quantum dot
We identify the operational conditions for maximum power of a nanothermoelectric engine consisting of a single quantum level embedded between two leads at different temperatures and chemical potentials. The corresponding thermodynamic efficiency agrees with the CurzonAhlborn expression up to quadratic terms in the gradients, supporting the thesis of universality beyond linear response. Copyrigh...
متن کاملEfficiency at maximum power of low-dissipation Carnot engines.
We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bou...
متن کاملEfficiency of molecular motors at maximum power
Molecular motors transduce chemical energy obtained from hydrolizing ATP into mechanical work exerted against an external force. We calculate their efficiency at maximum power output for two simple generic models and show that the qualitative behaviour depends crucially on the position of the transition state or, equivalently, on the load distribution factor. Specifically, we find a transition ...
متن کاملUniversality of efficiency at maximum power.
We investigate the efficiency of power generation by thermochemical engines. For strong coupling between the particle and heat flows and in the presence of a left-right symmetry in the system, we demonstrate that the efficiency at maximum power displays universality up to quadratic order in the deviation from equilibrium. A maser model is presented to illustrate our argument.
متن کاملThermoelectric Power Factor of Low Dimensional Silicon Nanowires
We analyze the thermoelectric power factor in ultra-narrow low-dimensional silicon nanowires (NWs) by employing atomistic considerations for the electronic structures and linearized Boltzmann transport theory. We consider different transport orientations and both n-type and p-type NWs. We show that the NW properties are highly anisotropic, especially for p-type, and as the diameter is reduced f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2010
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.82.235428